pygame&[]

BORRESLRE
pygame.init()
AIRHEIERTe 7 8. EFAIER
screen = pygame.display.set_mode(size=(0,0), flag=0, depth=0, vsync=0)

OB, FIRE T — 1 EBFMscreenfIE O (SLFRLERE—surfaceXds) , FMSHARUT:

e sizeRFEBEONENS

o flagiiREORIEE, TS,

o depthFRARBR, BNAEBTRE.

o VSyNnCERREAHBEERRY, TJUNSHITIRE.
FRUABAIBERENEAR ERGsizefflag.
SizeXBMAZHERT, RTREREONENSZI, EXE8NRFETLALHHIBENESEiREN0, B
SRERHA

flagZmEORIEEY, ERNELIT/LR:

RBIZ aX

pygame.FULLSCREEN <R

pygame.RESIZEABLE ATLAEE fE R FEEE A/
pygame.NOFRAME ToIBHE

pygame.SCALED BEEMN4E5

pygame.SHOWN ZEA

pygame.HIDDEN FAEH, ETRRFABEEEENEY

FERPIZE, XUNEFTLUETRERT | SKERY, LLANEERERESIZEABLEXZSCALED

flag = pygame.RESIZEABLE | pygame.SCALED

[N, ReXiBRFEALIBTES:
e pygame.display.set_mode()
Initialize a window or screen for display
set_mode(size=(0, 0), flags=0, depth=0, display=0, vsync=0) -> Surface

This function will create a display Surface. The arguments passed in are requests for a
display type. The actual created display will be the best possible match supported by
the system.


af://n0

Note that calling this function implicitly initializes pygame.display, if it was not
initialized before.

The size argument is a pair of numbers representing the width and height. The flags
argument is a collection of additional options. The depth argument represents the
number of bits to use for color.

The Surface that gets returned can be drawn to like a regular Surface but changes will
eventually be seen on the monitor.

If no size is passed or is setto (0, 0) and pygame uses SDL version 1.2.10 or above,
the created Surface will have the same size as the current screen resolution. If only the
width or height are set to 0, the Surface will have the same width or height as the
screen resolution. Using a sbL version prior to 1.2.10 will raise an exception.

It is usually best to not pass the depth argument. It will default to the best and fastest
color depth for the system. If your game requires a specific color format you can
control the depth with this argument. Pygame will emulate an unavailable color depth
which can be slow.

When requesting fullscreen display modes, sometimes an exact match for the
requested size cannot be made. In these situations pygame will select the closest
compatible match. The returned surface will still always match the requested size.

On high resolution displays(4k, 1080p) and tiny graphics games (640x480) show up very
small so that they are unplayable. SCALED scales up the window for you. The game
thinks it's a 640x480 window, but really it can be bigger. Mouse events are scaled for
you, so your game doesn't need to do it. Note that SCALED is considered an
experimental APl and may change in future releases.

The flags argument controls which type of display you want. There are several to
choose from, and you can even combine multiple types using the bitwise or operator,
(the pipe "|" character). Here are the display flags you will want to choose from:

pygame.FULLSCREEN create a fullscreen display

pygame .DOUBLEBUF (obsolete in pygame 2) recommended for HWSURFACE
or OPENGL

pygame . HWSURFACE (obsolete in pygame 2) hardware accelerated, only
in FULLSCREEN

pygame . OPENGL create an OpenGL-renderable display
pygame.RESIZABLE display window should be sizeable

pygame . NOFRAME display window will have no border or controls
pygame.SCALED resolution depends on desktop size and scale
graphics

pygame . SHOWN window is opened in visible mode (default)
pygame .HIDDEN window is opened in hidden mode

New in pygame 2.0.0: SCALED, SHOWN and HIDDEN

By setting the vsync parameter to 1, itis possible to get a display with vertical sync,
but you are not guaranteed to get one. The request only works at all for calls to
set_mode() with the pygame.OPENGL or pygame.SCALED flags set, and is still not
guaranteed even with one of those set. What you get depends on the hardware and
driver configuration of the system pygame is running on. Here is an example usage of a
call to set_mode() that may give you a display with vsync:



flags = pygame.OPENGL | pygame.FULLSCREEN
window_surface = pygame.display.set_mode((1920, 1080), flags, vsync=1)

Vsync behaviour is considered experimental, and may change in future releases.
New in pygame 2.0.0: vsync

Basic example:

# Open a window on the screen

screen_width=700

screen_height=400
screen=pygame.display.set_mode([screen_width, screen_height])

The display index 0 means the default display is used. If no display index argument is
provided, the default display can be overridden with an environment variable.

BBA T EH FRX4I& & SIRESIZEABLERTHITE

SNERBAIHLREMTEORNY (FRNRARMBEENIN%) | BPAZF(IRE/IRESIZEABLE
B, WNRFABEDHERENNRT, BARIZANRENEENE OAX/NAABERTHIEDKN,
FTLABA AT LAE -

windowsInfo = pygame.display.Info()

FRIBEOKRN. BRENE— R, BERZEN, XEARABZR, REMTHIIANERY
* currenthARIEEONS
e current w,ARIMEEANE
HERFEMNT, BeXBRIaLIBTE:
e pygame.display.Info()
Create a video display information object
Info() -> Videolnfo

Creates a simple object containing several attributes to describe the current graphics
environment. If this is called before pygame.display.set_mode() some platforms can
provide information about the default display mode. This can also be called after
setting the display mode to verify specific display options were satisfied. The VidInfo
object has several attributes:

hw: 1 if the display is hardware accelerated

wm: 1 if windowed display modes can be used

video_mem: The megabytes of video memory on the display. This is 0 if
unknown

bitsize: Number of bits used to store each pixel

bytesize: Number of bytes used to store each pixel

masks: Four values used to pack RGBA values into pixels

shifts: Four values used to pack RGBA values into pixels

Tosses: Four values used to pack RGBA values into pixels

bTit_hw: 1 if hardware Surface blitting is accelerated

bTlit_hw_cc: 1 if hardware Surface colorkey blitting is accelerated
blit_hw_A: 1 if hardware Surface pixel alpha blitting is accelerated
bTit_sw: 1 if software Surface blitting is accelerated



bTlit_sw_cC: 1 if software Surface colorkey blitting is accelerated
blit_sw_A: 1 if software Surface pixel alpha blitting is accelerated
current_h, current_w: Height and width of the current video mode, or
of the desktop mode if called before the display.set_mode
is called. (current_h, current_w are available since
SDL 1.2.10, and pygame 1.8.0). They are -1 on error, or if
an old SDL 1is being used.

HeBRasEaHIa0

e screen.flip() AFEHEO
e screen.set_caption(Caption) FIFIREEOIRR
e screen.set_icon(path) FAFIREBEORER, BINRT32x32



	pygame窗口

