e el

pygamefJ§f

pygameRIATEtERE—1 2K, BT pygame.time 1, ECINBIE—ETEXIS:

fclock = pygame.time.Clock()

XEFRAIHB T BFUfclockiIRTHYISR. BHEB— I EITERNGE:
e tick(framerate=0)->milliseconds
YEF: SErREh. XNAEAROZEMERE TR, BIREIFZEN DRXAN AR BEIRIR
FERTE BRIt E, GNERARER T framerateiXMEE(ELaNfclock.tick(60)), BPAIXNEREGR ISR
IER, LRSI TIERAS I REHENframerateis. LA S Z#ERE IR
LR, FRLARANIREZEEN —EEFPS, BEMREEAERINLE—T

fclock. tick(FPS)

AT LA IR R E R RIMERIE T T .
LATFARX:
tick()
update the clock
tick(framerate=0) -> milliseconds

This method should be called once per frame. It will compute how many milliseconds
have passed since the previous call.

If you pass the optional framerate argument the function will delay to keep the game
running slower than the given ticks per second. This can be used to help limit the
runtime speed of a game. By calling Clock.tick(40) once per frame, the program will
never run at more than 40 frames per second.

Note that this function uses SDL_Delay function which is not accurate on every
platform, but does not use much CPU. Use tick_busy_loop if you want an accurate
timer, and don't mind chewing CPU.

HARWGER pof NH, BeXi@RRFAIUBTEINELZENEEFE:
e tick_busy_loop()
update the clock
tick_busy_loop(framerate=0) -> milliseconds

This method should be called once per frame. It will compute how many milliseconds
have passed since the previous call.

If you pass the optional framerate argument the function will delay to keep the game
running slower than the given ticks per second. This can be used to help limit the
runtime speed of a game. By calling Clock.tick_busy_Toop(40) once per frame, the
program will never run at more than 40 frames per second.

Note that this function uses pygame.time.delay() pause the program for an amount
of time, which uses lots of CPU in a busy loop to make sure that timing is more
accurate.



af://n0
http://www.pygame.org/docs/ref/time.html#pygame.time.Clock
http://www.pygame.org/docs/ref/time.html#pygame.time.delay

New in pygame 1.8.
get_time()

time used in the previous tick
get_time() -> milliseconds

The number of milliseconds that passed between the previous two calls to
Clock.tickQ) .

get_rawtime()
actual time used in the previous tick
get_rawtime() -> milliseconds

Similar to clock.get_time() , but does not include any time used while Clock.tick()
was delaying to limit the framerate.

get_fps()
compute the clock framerate
get_fps() -> float

Compute your game's framerate (in frames per second). It is computed by averaging
the last ten calls to Clock.tick() .



	pygame时钟

